Microbiological quality of luncheon meat in Beheira governorate markets and restaurants

Abdelhamid Abu-Khadra
Animal Health Research Institute, Agricultural Research Center

ABSTRACT
A total of 100 random samples of luncheon meat were collected randomly from different markets and restaurants in El-Behira governorate, Egypt, for microbiological testing for quality. Each sample weighed 250 grams. The collected samples were transferred as rapidly and directly as possible to the laboratory in an insulated ice box under complete aseptic conditions for (1)- Aerobic plate count (APC), (2)- Enterobacteriaceae count (EC), (3)- Coliforms count (CC), (4)- Staphylococci count (SC) and (5) - detection of Salmonellae. The incidence of Aerobic Bacterial count (APC), Enterobacteriaceae count (EC), Coliforms count (CC) and Staphylococci count (SC) was 100%, 80%, 50% and 40% respectively. The mean value of APC, EC, CC and SC was 2.40 x 10^3, 3.52 x 10^3, 1.75 x 10^3 and 1.12 x 10^3 respectively. Salmonella failed detection from any sample. The public health significance of such bacteriological counts and isolated microorganisms as well as suggestive measures was discussed.

Keywords: Luncheon, Markets, Egypt, Microbiology, Quality

1. Introduction
Meat is considered as an essential food, tasty, easily digested and of high quality animal protein as well as has enough amounts of vitamins and minerals. Handling of meat and its products and improper heating may act as an important vehicle of infection and may cause human food poisoning. Yassien (1988) examined bacteriologically 20 samples of each pasterma, luncheon, minced meat and sausage. He found that the total aerobic count, Enterobacteriaceae count, coliform count, fecal coliform count and E.coli of samples of luncheon was 3.8 x 10^4 ± 1.4 x 10^4, 1.4 x 10^3 ± 9.7 x 10^2, 34.1 ± 23.9 and 2.3 ± 0.5 respectively. Rafaei and Nashed (1989) examined bacteriologically 20 luncheon samples and they reported that the mean value of total enterobacteriaceae count was 72.5 x 10^2, further they isolated E.coli in rate of 66%. Salmonella failed detection. Gouda (1991) examined bacteriologically 25 samples of pasturma, luncheon, minced meat and sausage. She found that the total bacterial count, Enterobacteriaceae count, Coliform count and Staphylococcus count in luncheon were 5.5 x 10^8, 4 x 10^4, 1.4 x 10^3 and 2.3 x 10^4 respectively. SALEH (1991) examined bacteriologically 50 luncheon samples, 25 each of luncheon before and after casing and heat treatment, collected from some meat plants in Alexandria province. He found that the mean values of total bacterial count, Enterobacteriaceae and Staph.aureus count for samples of luncheon before casing was 9.1 x 10^2 ± 6.5 x 10^3, 3.3 x 10^3 ± 3.3 x 10^3 and 1.1 x 10^5 ± 1.4 x 10^4 organisms / gram respectively. While after casing and heat treatment the average counts was 4.7 x 10^5 ± 6.6 x 10^4, 5.3 x 10^3 ± 3.3 x 10^4 and 3.4 x 10^4 ± 1.4 x 10^4 organisms / gram respectively. Salmonellae could not be isolated from any examined samples.

Fathi et al. (1992) examined bacteriologically 12 luncheon samples. Coliforms were found in all samples with an average count of 7.4 x 10^3 / gram. While E.coli was detected in 5 (41.67%) of examined samples with an average count of 18.68% / gram.

Mousa et al. (1993) examined bacteriologically 25 luncheon meat samples collected from different supermarkets at Cairo and Giza governorates. They found that the mean values of total mesophilic count, Enterobacteriaceae count and Staphylococci count was 5.5 x 10^7, 7 x 10^4, 1.4 x 10^3 and 2.3 x 10^4 organisms / gram respectively. The incidence of E.coli and Enterobacter aerogenes was 52 and 14% respectively, but Salmonellae were not isolated from any examined samples. Amal and Seham (1998) analyzed bacteriologically 40 luncheon samples, which were collected from different localities in Assiut city. They found that Salmonellae failed detection. Fruin et al. (1998) examined bacteriologically 50 samples of luncheon meat purchased from high volume retail markets. They found that the mean value of aerobic plate count (APC) was 1.1 x 10^7 organisms / gram with a range from 8.0 x 10 to 7.0 x 10^7 organisms / gram. Salmonellae could not be isolated.

Moussa et al. (2004) examined bacteriologically 25 fresh meat samples, which were collected from different supermarkets at Cairo and Giza governorates. They found that the mean values of aerobic plate count, Enterobacteriaceae count and Staphylococci count in luncheon samples was 6.9 x 10^6 ± 1.7 x 10^6 and 6.9 x 10^6 ± 1.6 x 10^6 organisms / gram respectively. Amal (2004) examined bacteriologically 25 samples of each of fresh meat, beef burger, luncheon and basterma collected from butcher’s shops and market located at Damahour. She found that the total aerobic bacterial count and total psychrotrophic bacterial count of luncheon samples was 6.9 x 10^6 ± 1.7 x 10^6 and 6.9 x 10^6 ± 1.6 x 10^6 organisms / gram respectively. Darweesh (2008) analyzed bacteriologically 20 random samples each of luncheon, basterma and sausage. He found that the mean values of total aerobic bacterial count and coliform count for luncheon samples was 9.24 x 10^4 ± 7.99 x 10^3 and 4.80 x 10^2 ± 1.16 x 10^2 respectively. Salmonellae could not be isolated from any examined samples.

Corresponding author:
E-mail address: abdelhamidabukhadra@yahoo.com
Animal Health Research Institute, Agricultural Research Center

P ISSN: 2636-3003 EISSN: 2636-2996

Received: October 28, 2020; Received in revised form: November 4, 2020; accepted: November 10, 2020.
Abdu-Khadra, A.

Damanhour Journal of Veterinary Sciences 5 (1), (2020) 1-3

Ibrahim (2009) analyzed bacteriologically 35 random samples each of Luncheon, Basterma and Sausage in Alex. Governorate. he found that the mean values of total aerobic bacterial count and coliform count for Luncheon samples was 33.78 x 10^2 ± 1.79 x 10^4 and 3.7 x 10^2 ± 0.78 x 10^2 respectively. In addition, the study shows the incidence of E.coli in Luncheon was 5.71%. Also this work revealed that the percentage of Staph.aureus was 22.85%, in Luncheon, Salmonelae and E.coli O157 H7 could not be isolated from any examined samples. El shamy,Y.M.(2015) reported that the mean values of aerobic plate count, Enterobacteriaceae count and coliform count / gram of luncheon was 6.8 x 10^2 , 4.65 x 10^2 and 3.50 x 10^2 respectively .and an incidence of Staphylococcus aureus was 80 % in luncheon samples

2. Material and methods

1-Collection of samples:
A total of 100 random samples Luncheon meat were collected randomly from different supermarkets and restaurants in El-Behira province ,Egypt each sample weighed 250 gram, the collected samples were transferred as rapidly and directly as possible to the laboratory in an insulated ice box under complete aseptic conditions for an evaluation of their bacteriological condition.

2-Culture media:
Agar agar , MacConkey agar, Mannitol salt agar, Baired parker agar, Salmonella-Shigella agar; Brilliant green bile2% broth, MacConkey broth, Selenite F.broth, Eosin Methylene blue agar, Sorbitol-MacConkey medium, Nutrient agar , Nutrient broth , peptone water , Standard plate count agar Tetrathionate broth VRBG agar and VRB agar.

Methods:
1-Aerobic plate count, ICMSF (1982).
2-Psychrotrophic bacterial count, ICMSF (1982).
3-Enterobacteriaceae count, ICMSF (1982).
4-Coliforms count ,ICMSF (1978).

3. Results:

Table (1): Statistical analytical results of 1- Aerobic plate count (APC), 2- Enterobacteriaceae count(EC), 3- Coliforms count (CC) and 4- Staphylococci count (SC)(cfu/g) of examined Luncheon meat samples (n=100)

<table>
<thead>
<tr>
<th>Test</th>
<th>No. of positive samples</th>
<th>% of positive samples</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- APC, Aerobic Plate Count</td>
<td>100</td>
<td>100%</td>
<td>2 x 10^2</td>
<td>12 x 10^3</td>
<td>2.40 x 10^3 ± 4.65 x 10^2</td>
</tr>
<tr>
<td>2- EC, Enterobacteriaceae count</td>
<td>80</td>
<td>80%</td>
<td>4 x 10^2</td>
<td>8 x 10^3</td>
<td>3.52 x 10^2 ± 5.62 x 10^1</td>
</tr>
<tr>
<td>3- CC, Coliforms count</td>
<td>50</td>
<td>50%</td>
<td>2 x 10^2</td>
<td>7 x 10^3</td>
<td>1.75 x 10^3 ± 3.53 x 10^2</td>
</tr>
<tr>
<td>4- SC, Staphylococci count</td>
<td>40</td>
<td>40%</td>
<td>1 x 10^2</td>
<td>5 x 10^3</td>
<td>1.12 x 10^3 ± 2.72 x 10^2</td>
</tr>
</tbody>
</table>

SEM = Standard error of the mean.
Means with similar letters are not significantly different at P ≤ 0.05.

Table (2) incidence of Salmonella in examined Luncheon meat samples (n=100)

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>No. of positive samples</th>
<th>% of positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure (1): The incidence of APC, EC, CC and SC in Luncheon meat samples

4. Discussion

1- Total bacterial count (Aerobic plate count (APC):
Total aerobic bacterial count is used as an important index for the level of sanitation and hygiene quality of meat products (Lillard et al., 1984). The results presented in table (1) and figure (1) showed that the incidence of APC was 100 % in all luncheon samples and APC ranged from 2 x 102 to 12 x 103 with a mean value of 2.40 x 103 . According to (EOS, 1990/2005) APC should not exceed more than 1 x 104 in luncheon . Results showed that the examined luncheon samples were within the Egyptian standards (EOS). Higher results were reported by Yassien (1988), Gab-Allah (1990), Gouda (1991), Saleh (1991), Fruin et al. (1998), Al-Naggar (2000), Amal (2004), Darweesh (2008), Ibrahim (2009). While lower results was reported by El shamy (2015).

2- Enterobacteriaceae count (EC):
Enterobacteriaceae is a group of organisms are used in food testing as hygiene indicator for fecal pollution and environmental contamination (Meat Industry Guide 2012). Enterobacteriaceae can give an advance warning of failures in hygiene procedures in food manufacturing site. The results presented in table (1) and figure (1) showed that the incidence of EC was 80 % in all luncheon samples and EC ranged from 4 x 102 to 8 x 103 with a mean value of 3.52 x 103 . Higher results were reported by Gouda (1991), Saleh (1991), Amal (2004). While lower results were reported by Yassien (1988), Rafaei and Noshed (1989), Mousa et al. (1993), El shamy (2015).

3- Coliforms count (CC):
Coliforms are bacteria that are found naturally in the environment and are generally harmless . they can grow at body temperature and the presence of total Coliforms in meat products can be used as an indicative of poor handling practices (BC Public Health Microbiology Reference Laboratory 2007). The results presented in table (1) and figure (1) showed that the incidence of Coliforms was 50 % in all luncheon samples and CC ranged from 2 x 102 to 7 x 103 with a mean value of 1.75 x 103 . According to (EOS, 1990/2005) CC should not exceed more than 1 x 102 in luncheon , we found that the examined luncheon samples were higher than the permissible limit of the Egyptian standards (EOS). Higher results were reported by Fathi et al. (1992). While lower results were reported by Yassien (1988), Gouda (1991), Amal (2004), Darweesh (2008), Ibrahim (2009) and El shamy (2015).

4- Staphylococcus aureus count (SC):
Staphylococcus aureus could cause food poisoning if it grows in large numbers can leave toxins in the product. The higher incidence of Staphylococcus aureus may due to very bad hygienic measures in many supermarkets as well as bad personal hygiene of workers (Hayes, 1992). Higher numbers can leave toxins in the product. The higher incidence of Staphylococcus aureus could cause food poisoning if it grows in large numbers can leave toxins in the product. The higher incidence of Staphylococcus aureus may due to very bad hygienic measures in many supermarkets as well as bad personal hygiene of workers (Hayes, 1992). Higher numbers of Staphylococci indicate bad personal hygiene and need good application of HACCP (Hazard Analysis Critical Control Points) system in meat products production and industries. Baier (2005). Studies indicated that large numbers (usually greater than 1 million per gram) of coagulase positive Staphylococcus aureus must contaminate the food for
producing sufficient enterotoxin to cause food poisoning. Gilbert et al. (1972). The results presented in table (1) and figure (1) showed that the incidence of Staphylococcus aureus was 40% in all luncheon samples and SC ranged from 1×10^2 to 5×10^3 with a mean value of 1.12×10^3. Higher results were reported by Gouda (1991), Saleh (1991), Mousa et al. (1993) and El shamy (2015). While lower results were reported by Hemeida et al. (1986), Amal (2004) and Ibrahim (2009).

6. Detection and identification of Salmonellae:
Salmonellae is food poisoning microorganisms and According to (EOS, 1990/2005) luncheon meat should be free from salmonellae. It was found that the examined luncheon samples were within the Egyptian standards (EOS). Salmonellae could not be isolated from any examined samples. The same results were reported by Saleh (1991), Fruin et al. (1998), Amal (2004), and Ibrahim (2009).

5. Conclusion
The results obtained concluding that the microbiological examination was useful as it gives the first aid in judging the fitness of the product. Appropriate food handling procedures at every level of the production process can go a long way in preventing food infection. Processors must use clean sources of water to wash produce. Processing machinery must be disinfected regularly.

Conflict of interest statement
No conflicts of interest

Funding
The authors declared that they received no financial support for his research and for authorship of this article.

6. References